NVIDIA TensorRT is a platform for high-performance deep learning inference on GPU device.

Quantization Scheme

8bit per-channel symmetric linear quantization.

\[\begin{equation} q = \mathtt{clamp}(\lfloor x * s \rceil, lb, ub) \end{equation}\]

where \(s\) is scaling factor to quantize a number from floating range to integer range, \(lb\) and \(ub\) are bounds of integer range. For weights, [lb, ub] = [-127, 127]. For activations, [lb, ub] = [-128, 127].

For weights, each filter needs an independent scale \(s\).

Deploy on TensorRT


  • Install TensorRT>=8.0EA from NVIDIA


We provide the example to deploy the quantized model to TensorRT using AdaRound and explicit mode.

  • First edit </path-of-MQBench/application/imagenet_example/PTQ/configs/adaround/r18_8_8_trt.yaml>’s datasets, pretrained and output path, then export the quantized model to onnx.

    1cd /path-of-MQBench/application/imagenet_example/PTQ/ptq
    2python ptq.py --config /path-of-MQBench/application/imagenet_example/PTQ/configs/adaround/r18_8_8_trt.yaml
  • Second build the TensorRT INT8 engine and evaluate, please make sure [dataset_path] contains subfolder [val].

    1python onnx2trt.py --onnx <path-of-onnx_quantized_deploy_model.onnx> --trt <model_name.trt> --data <dataset_path> --evaluate